Drilling Automation

MULTIDISCIPLINARY MODELLING APPROACH TO: PLANNING, MONITORING, AND OPTIMIZATION OF WELL CONSTRUCTION
Introduction

- Automation is an incremental process, reducing human interaction with the processes and targeted to:
 - reduce complexity, operational risk, and manpower;
 - improve efficiency and safety;
 - minimize human factor induced errors;
 - reduce communication, data transfer and aggregation errors;
 - consolidate experience and continuously improve practices;
 - facilitate training and knowledge transfer;
Introduction

- Integration of the surface and downhole measurements with predictive models is a cornerstone of drilling automation
- Drilling automation requires integration of the 3 stages
 - Planning: pre-engineering and training
 - Execution: monitoring and operation
 - Learning: post job analysis and simulation
Analysis capabilities

- **Geo-pressure**
 - Pore pressure prediction
 - Wellbore stability and fracture gradient estimation

- **Drillstring analysis**
 - Drillstring design
 - Torque & Drag

- **BHA analysis**
 - Static analysis
 - Vibrational analysis

- **Hydraulics**
 - Snapshot analysis
 - Parametric analysis
 - Bit optimization
 - Tripping

- **Influx simulation**
 - Circulate influx
 - SBP schedule
Monitoring implementation

- Perform data aggregation from multiple sources
 - Direct sensor measurements
 - Rig network (WITS)
 - Remote servers (WITSML)

- Determine rig operations and activities

- Define custom warnings and control algorithms

- Analyze and report KPI
Monitoring implementation

- Compare planned vs. actual
 - Formation pore and fracture pressure prediction
 - Wellbore stability analysis
 - Torque, drag, and buckling analysis
 - Hydraulics

- Predict ahead, based on real-time calibrated models

- Predict NPT events and downhole loads

- Custom calculations and on-demand drilling engineering analysis
Operation implementation

- Designed to satisfy both rig and office personnel
- Equipment controls
- Time-based and depth-based profiles
- Live Well display
- Identifies status of well and operations
Simulation implementation

Simulation capabilities

- Model well control scenarios by simulating rig equipment and using real-world control software
- Access to real-time engineering tools
 - Hydraulics analysis
 - Formation pore pressure prediction and WBS and fracture pressure calculations
 - Torque, drag, and buckling analysis
- Predict ahead and play what-if scenarios, based on the current well state
- Training field real-time monitoring, and drilling optimization personnel
Application Examples

- Managed Pressure Drilling provider requires:
 - integrated and automated control of equipment

- Drilling Optimization requires:
 - BHA optimization and selection of drilling parameters during planning stage
 - monitoring and real-time prediction models

All applications utilize single software platform:

- Office engineering
- On site operations execution
- Monitoring remotely in Real Time Operation Centers
MPD Concept: Drilling Undrillable

BHP = SMW + Friction + Surface Backpressure

MPD Closed Loop System enables to drill with CBHP
Software Platform for MPD

<table>
<thead>
<tr>
<th>Application Engineering</th>
<th>Control and Automation</th>
<th>Real-time Monitoring Analysis and Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well hydraulics</td>
<td>MPD manifold</td>
<td>Kick & loss detection</td>
</tr>
<tr>
<td>Geomechanics</td>
<td>RCD</td>
<td>Equipment monitoring and diagnostics</td>
</tr>
<tr>
<td>Torque & drag</td>
<td>Riser stack</td>
<td>Remote viewer</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td>Automatic KPIs</td>
</tr>
</tbody>
</table>
Pre engineering for MPD

- Geomechanic analysis
 - Defines safe drilling window:
Pre engineering for MPD

- **Hydraulic analysis**
 - predict pressure distribution
 - detects equipment limitations,
 - hole cleaning issues,
During operation: managing pressure

- **During connection**

 Holding SBP at 4500 kPa to maintain constant ECD
During operation: Dynamic Leak-Off Test

SBP increased until flow out slightly deviates from flow in
Operation example: kick mitigation

- automatic influx detection and control

Flow Out > Flow In

SBP increased to control influx by closing choke

Flow Out = Flow In
Drilling optimization while planning

- Torque, Drag and Buckling
 - Evaluates drillability of a well within operational limits
Drilling optimization while planning

- BHA optimization and optimal drilling parameters
NPT detection while monitoring: stuck pipe example

- Hook Load actual less than predicted, axial friction increases
- actual Surface Torque higher than predicted one, rotational resistance increased
- Measured SPP started to deviates from predicted due to reduction of flow area
Conclusions

New Software Platform provides:

- System approach to designing and engineering of drilling operations
- Setup, configuration, and database shared between different applications with a common interface
 - Planning
 - Monitoring
 - Operation
 - Simulation
- Automated Control of MPD operations