Agenda

• What is Alarm Management?
• What is the Process of Alarm Management?
• What are Benefits of Alarm Management?
• What Services are Offered by General Vendors
What is Alarm Management

- Alarm management is the processes and practices for determining, documenting, designing, operating, monitoring, and maintaining alarm systems. (ANSI/ISA–18.2–2009, Clause 3.1.14)

- Characterized by the application of:
 - System design principles
 - Good engineering practices
 - Human factors principles
An alarm is an audible and/or visual warning message to the operator to which he must respond. It is generated by a process variable crossing a defined threshold into an abnormal, undesirable, or hazardous region.

An alarm is an intentional interruption to the operator.

An alarm is a demand for help from the process.
Alarm Management Lifecycle – ISA 18.2
Alarm Rationalization Project Execution

- Determine No. of Tags to Rationalize
- Prep work –
 - Review PHA/LOPA Results
 - Review SOL’s/COD’s
 - Collect Tag Info and Populate D&R Tool
- Training Session Options
 - Alarm Philosophy Development
 - ISA Standard Familiarization
 - D&R Training
- Rules of Engagement Session
Alarm Rationalization Flowchart

1-2 Days: Training
1-2 Days: Rules Of Engagement
10- Days: D&R Session 1 (Documentation and Rationalization)
10- Days: D&R Session 2
10- Days: D&R Session 3
Rationalization Process

1. Form Rationalization Team

Rationalization Team

Core
- Facilitator
- Experienced Operators
- Operations Supervisor
- Process Engineer

Supplemental
- I&C Engineer / Technician
- Health, Safety (Risk Management), & Environmental
- Risk Management
- Maintenance Supervisor / Technician
- Training Specialist
- Equipment Specialists
- Consultants as needed
Rationalization Process

1. Form Rationalization Team

2. Assemble Documentation

- **Documentation & Resources**
 - Alarm Philosophy
 - P&ID’s
 - Logic Diagrams
 - Operating Procedures
 - HAZOP’s / Process Safety Analysis (PHA)
 - Failure Mode and Effects Analysis (FMEA)
 - Safety Integrity Level (SIL) Assessments
 - Layer of Protection Analysis (LOPA)
 - Incident Investigations
 - Environmental Permits
 - Current Good Manufacturing Practice (cGMP)
 - ISO Quality Process
 - Packaged Equipment Manufacturer Requirements / Recommendations
Rationalization Process

1. Form Rationalization Team
2. Assemble Documentation
3. Rationalization & Documentation
 a. Select Alarms for Review

- Select Alarm(s)
 - MAdB Review
 - Common Elements
 - Method of Flows
 - Method of Elements
 - “Clean Slate”
 - Combination
Rationalization Process

1. Form Rationalization Team

2. Assemble Documentation

3. Rationalization & Documentation
 a. Select Alarms for Review

 b.1 Determine Priority (Consequences)
 b.2 Determine Priority (Time to Respond)

Priority – Relative Importance

- Consequence
 - Impact
 - Severity
- Maximum Time to Respond
 - Set point must be determined in order to give the operator sufficient time to respond.

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Urgency</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now (< 5 min)</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Critical</td>
</tr>
<tr>
<td>Next (5-15 min)</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Critical</td>
</tr>
<tr>
<td>Later (>15 min)</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Critical</td>
</tr>
</tbody>
</table>

Now
Next (5-15 min)
Later (>15 min)

Minor
Moderate
Major
Extreme
Example: Consequence vs. Priority

<table>
<thead>
<tr>
<th>Safety</th>
<th>-</th>
<th>-</th>
<th>Safety Shower</th>
<th>Potential MTI or worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>-</td>
<td>Minor release inside boundary</td>
<td>Significant release inside boundary</td>
<td>Notifiable release</td>
</tr>
<tr>
<td>Production loss (examples)</td>
<td>Lower efficiency, Increased fouling</td>
<td>Non-spared equipment has tripped</td>
<td>Non-spared equipment will trip</td>
<td>Downtime more than 1 week</td>
</tr>
<tr>
<td>Equipment damage (examples)</td>
<td>Pump damage (spare on)</td>
<td>Pump damage (no spare)</td>
<td>Damage to major equipment</td>
<td>Critical equipment destroyed</td>
</tr>
<tr>
<td>Inefficient operation</td>
<td>< $50k</td>
<td>$50 to 100k</td>
<td>> $100k</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now (< 5 min)</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Critical</td>
</tr>
<tr>
<td>Next (5-15 min)</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Critical</td>
</tr>
<tr>
<td>Later (>15 min)</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Critical</td>
</tr>
</tbody>
</table>
Rationalization Process

1. Form Rationalization Team

2. Assemble Documentation

3. Rationalization & Documentation
 - a. Select Alarms for Review
 - b.1 Determine Priority (Consequences)
 - b.2 Determine Priority (Allowable Response Time)
 - c. Required Documentation

• Alarm Response
 - Cause
 - Corrective Action
 - Confirmation / Verification
Rationalization Process

1. Form Rationalization Team

2. Assemble Documentation

3. Rationalization & Documentation

 a. Select Alarms for Review

 b.1 Determine Priority (Consequences)

 b.2 Determine Priority (Allowable Response Time)

 c. Required Documentation

 d. Other Attributes or Documentation

• Other Alarm Attributes
 - Class
 - Description
 - Alarm Message
 - Destination / Routing
 - Linkage to other documents
Rationalization Process

1. Form Rationalization Team

2. Assemble Documentation

3. Rationalization & Documentation
 a. Select Alarms for Review
 d. Other Attributes or Documentation
 c. Required Documentation
 b.1. Determine Priority (Consequences)
 b.2. Determine Priority (Allowable Response Time)
Alarm Rationalization Steps

• Intersection of Safety & Alarm Management
 – Develop Consequence and risk ranking for Health/Safety, Environmental and Commercial impacts
 • From Alarm Philosophy Document
 – Primary Cause
 – Operator Corrective Action

• ORT (Operator Response Time)
• TTE (Time To Event)
 • ORT Explained.pptx

• Alarm setpoint
• Priority
• Advanced Alarming
 – Masking
 – Grouping
 – Overriding and Reason
Alarm Rationalization Steps

• ORT (Operator Response Time)
• TTE (Time To Event)
 • ORT Explained.pptx
• Alarm setpoint
• Priority
• Advanced Alarming
 – Masking
 – Grouping
 – Overriding and reason

aesolns.com
Typical Alarm Management Services

• Training
 – Principles of Alarm Management
 – Rationalization Process
• Alarm Philosophy development
• Alarm Philosophy Gap analysis
• Alarm Rationalization Facilitation
• Updating and harmonization of PSI documentation
Questions?