IADC WellCAP Well Control Worksheet

Bullhead

Well Name: ____________________________ **Completed By:** ___________________________ **Date:** _____ / _____ / _____

TRUE PUMP OUTPUT:

\[\text{Bbls/Stk @ 100\%} \times \% \text{ Efficiency} = \text{TPO (Bbls/Stk)} \]

PUMP RATE CONSIDERATIONS:

Kill Rate Speeds and Volume

\[\frac{\text{Desired Barrels per Minute (BBLs/MIN)}}{\text{Pump Output (BBLs/Stk)}} = \text{Pump Rate (STKS/MIN)} \]

\[\frac{\text{Desired Barrels per Minute (BBLs/MIN)}}{\text{Pump Output (BBLs/Stk)}} = \text{Pump Rate (STKS/MIN)} \]

\[\frac{\text{Desired Barrels per Minute (BBLs/MIN)}}{\text{Pump Output (BBLs/Stk)}} = \text{Pump Rate (STKS/MIN)} \]

VOLUME AND STROKE CONSIDERATIONS:

Tubing Volume/Strokes (Surface to End of Tubing, E.O.T.)

\[\frac{\text{Tubing Length Surface to E.O.T. (MD — FT)}}{\text{Capacity per Foot in Tubing (BBLs/FT)}} \times \frac{\text{Tubing Volume Surface to E.O.T. (BBLs)}}{\text{Pump Output (BBLs/Stk)}} = \frac{\text{Strokes Surface to E.O.T. (STKS)}}{\text{E.O.T. (STKS)}} \]

Casing Volumes/Strokes (Below End of Tubing, E.O.T. to Perforations)

\[\frac{\text{Length E.O.T. to Perfs (MD — FT)}}{\text{Capacity per Foot Top/Middle/Bottom in Casing (BBLs/FT)}} \times \frac{\text{Casing Volume E.O.T. to Perforations (BBLs)}}{\text{Pump Output (BBLs/Stk)}} = \frac{\text{Strokes E.O.T. to Perforations (STKS)}}{\text{E.O.T. to Perforations (STKS)}} \]

Surface to Perforations Volume/Strokes (Kill Point)

\[\frac{\text{Tubing Volume Surface to E.O.T. (BBLs)}}{\text{Casing Volume E.O.T. to Perforations (BBLs)}} \times \frac{\text{Surface to Perforations Volume (BBLs)}}{\text{Pump Output (BBLs/Stk)}} = \frac{\text{Strokes Surface to Perforations (STKS)}}{\text{Strokes to Pump (Kill Point — STKS)}} \]

Total Volume/Strokes to Pump (Including Overdisplacing)

\[\frac{\text{Surface to Perforations Volume (BBLs)}}{\text{Overdisplacement — if any — (BBLs)}} + \frac{\text{Total Volume to Pump (BBLs)}}{\text{Pump Output (BBLs/Stk)}} = \frac{\text{Total Strokes to Pump (Overdisplace — STKS)}}{\text{E.O.T. to Perfs (STKS)}} \]

FORMATION PRESSURE CONSIDERATIONS:

Kill Fluid Density

\[\frac{\text{Formation Pressure (PSI)}}{0.052} + \text{Depth to Perforations Top/Middle/Bottom (TVD — FT)} = \text{Kill Fluid Density (PPG)} \]

Estimated Formation Integrity Pressure (Fracture)

\[\frac{\text{Max. Allowable Mud Density (PPG)}}{0.052} \times \text{Depth to Perforations Top/Middle/Bottom (TVD — FT)} = \text{Estimated Formation Integrity Pressure (PSI)} \]

Average Hydrostatic Pressure in Tubing

\[\frac{\text{Formation Pressure (PSI)}}{0.052} - \text{Initial Shut in Tubing Pressure (PSI)} = \text{Average Hydrostatic Pressure in Tubing (PSI)} \]

Initial Estimated Maximum Pressure on Tubing (Static)

\[\frac{\text{Est. Formation Integrity Pressure (PSI)}}{0.052} - \text{Average Hydrostatic Pressure in Tubing (PSI)} = \text{Initial Estimated Max. Pressure on Tubing (PSI)} \]

Kill Fluid Hydrostatic Pressure

\[\frac{\text{Kill Fluid Density (PPG)}}{0.052} \times \text{Depth to Perforations Top/Middle/Bottom (TVD — FT)} = \text{Kill Fluid Hydrostatic Pressure (PSI)} \]

SLOW CIRCULATION RATE (SCR):

<table>
<thead>
<tr>
<th>STKS/MIN</th>
<th>Pressure (PSI)</th>
<th>BBL/MIN</th>
<th>Pressure (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECORDED WELL DATA:

- **Formation Pressure**: PSI
- **Max. Allowable Mud Density**: PPG
- **Maximum Pump Pressure**: PSI
- **Shut In Tubing Pressure**: PSI
- **Shut In Casing Pressure**: PSI
- **Tree/Wellhead/BOP Stack Rating**: PSI
- **Annulus Fluid Density**: PPG
- **Packer Set**: PPG
- **TVD MD**: FT
- **Top Perforation MD**: FT
- **Middle Perforation MD**: FT
- **Bottom Perforation MD**: FT

DISCLAIMER: This Well Control Worksheet is intended solely for the use of the IADC and IADC accredited schools and organizations engaging in the teaching of the IADC WellCAP Well Control classes. The IADC, its employees or others acting on its behalf, makes no warranties or guarantees expressed, implied or statutory, as to any matter whatsoever, with respect to the use of this Well Control Worksheet.

Bullheading method, US (psi, ft, ppg)

Field Units

Revised January 22, 2015

Page 1
TUBING & CASING DATA

TUBING DATA:

<table>
<thead>
<tr>
<th>Tubing</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Diameter (INCHES)</td>
<td>Inside Diameter (INCHES)</td>
<td>Capacity per Foot (BBLS/FT)</td>
<td>Length to E.O.T. (MD — FT)</td>
</tr>
</tbody>
</table>

Tubing Collapse

\[\text{Tubing Collapse (PSI)} \times \text{Safety Factor (0.70 or Less)} = \text{Adjusted Tubing Collapse (PSI)} \]

Tubing Yield

\[\text{Tubing Yield (PSI)} \times \text{Safety Factor (0.70 or Less)} = \text{Adjusted Tubing Internal Yield (PSI)} \]

CASING DATA:

<table>
<thead>
<tr>
<th>Casing</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Diameter (INCHES)</td>
<td>Inside Diameter (INCHES)</td>
<td>Capacity per Foot (BBLS/FT)</td>
<td>Length (MD — FT)</td>
</tr>
</tbody>
</table>

Casing Internal Yield

\[\text{Casing Internal Yield (PSI)} \times \text{Safety Factor (0.70 or Less)} = \text{Adjusted Casing Yield (PSI)} \]

PRESSURE CONSIDERATIONS:

Pressure Consideration PSI per “Step”

\[\text{Lesser value of “Tubing Yield” or “Initial Estimated Maximum Pressure on Tubing” results (see page 1)} \]

\[\text{Lesser value of “Tubing Yield” or “Final Estimated Maximum Pressure on Tubing (Static)” results (see page 1)} \]

Volume per “Step”

\[\frac{\text{Volume per “Step” (BBLS/STEP)}}{\text{Number of “Steps”}} \times 42 = \frac{\text{Volume per “Step” (GALS/STEP)}}{\text{Volume (BBLS)}} \]

Strokes per “Step”

\[\frac{\text{Strokes per “Step” (STKS)}}{\text{Number of “Steps”}} \times 10 = \frac{\text{Strokes per “Step” (STKS/STEP)}}{\text{Stroke Surface to Perforations (STKS)}} \]

PRESSURE CHART

<table>
<thead>
<tr>
<th>Strokes</th>
<th>Volume in BBLS</th>
<th>Volume in GALS</th>
<th>Estimated Max. Static Pressure</th>
<th>Actual Tubing Pressure</th>
<th>Casing Pressure</th>
<th>Pump Rate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCLAIMER: This Well Control Worksheet is intended solely for the use of the IADC and IADC accredited schools and organizations engaging in the teaching of the IADC WellCAP Well Control classes. The IADC, its employees or others acting on its behalf, makes no warranties or guarantees expressed, implied or statutory, as to any matter whatsoever, with respect to the use of this Well Control Worksheet.

Field Units

(psi, ft, ppg)

Bullheading method, US

Revised January 22, 2015

Page 2
FORMULAS

1. Pressure Gradient (psi/ft) = Mud Weight (ppg) x 0.052

2. Hydrostatic Pressure (psi) = Mud Weight (ppg) x 0.052 x Depth (ft, TVD)

3. Capacity (bbls/ft) = Inside Diameter² (in.) ÷ 1029.4

4. Annular Capacity (bbls/ft) = (Inside Diameter of Casing² (in.) or Hole Diameter² (in.) - Outside Diameter of Pipe² (in.)) ÷ 1029.4

5. Pipe Displacement (bbls/ft) = (Outside Diameter of pipe² (in.) - Inside Diameter of pipe² (in.)) ÷ 1029.4

6. Maximum Allowable Mud Weight (ppg) = \[
\frac{\text{Surface LOT Pressure (psi)}}{\text{Shoe Depth (ft, TVD)}} \times 0.052 + \text{LOT Mud Weight (ppg)}
\]

7. MAASP (psi) = [Maximum Allowable Mud Weight (ppg) - Present Mud Weight (ppg)] x 0.052 x Shoe TVD (ft)

8. Formation Pressure (psi) = Hydrostatic Pressure Mud in Hole (psi) + SIDPP (psi)

9. Sacks (100 lb) of Barite Needed to Weight-Up Mud = \[
\frac{\text{Bbls of Mud in System} \times 14.9 \times (\text{KMW} - \text{OMW})}{(35.4 - \text{KMW})}
\]

NOTE: This formula assumes that the average density of Barite is 35.4 ppg and the average number of sacks (100lb) per barrel is 14.9.

10. Volume Increase from Adding Barite (bbls) = Number of Sacks (100 lb) added ÷ 14.9

11. Equivalent Mud Weight (ppg) @ __________ depth (ft) = \[
\frac{\text{Pressure (psi)}}{\text{Depth (ft, TVD)}} \times 0.052 + \text{Current Mud Weight (ppg)}
\]

12. Estimated New Pump Pressure at New Pump Rate (psi) = Old Pump Pressure (psi) x \[
\left(\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}}\right)^2
\]

13. Estimated New Pump Pressure with New Mud Weight (psi) = Old Pump Pressure (psi) x \[
\frac{\text{New Mud Weight (ppg)}}{\text{Old Mud Weight (ppg)}}
\]

COMMENTS