DEA Forum

PDC Bit Innovations for Today’s Complex Shale Wells

September 15, 2014

Dan Scott
Senior Technical Advisor
Baker Hughes Inc.
Overview

• Complex well profiles require more complex BHA
 – More “jewelry” in the BHA

• Variety of new motors available
 – Higher torque
 – Longer life

• Rotary Steerable Systems
 – Bits designed for the system

• Limited HSi at the bit
 – Design and plan for it

• More demands on the cutters and bits
 – Stability improved
 – Steerability (DOC Control)
 – Durability and abrasion resistance improvements in cutters

• PDC Cutter is part of the bit, which is part of the system.
Steerable Bit Technology Package for Unconventionals

- Unconventional shale formations
- Curve-lateral sections
- Low HSi
- Features:
 - Application specific profile
 - Polished cutters
 - Application specific cutters
 - Diverging junk slots
 - Hydrophobic coating (available on request)
 - Advanced hardfacing on tough steel body
 - Short bit body
 - DOC control to minimize torque fluctuations
 - Field adjustable available soon
 - DART process

© 2012 Baker Hughes Incorporated. All Rights Reserved.
Cutter Technology Innovations

- Improved thermal stability
- Polished finish to reduce friction
- Multidimensional contoured face runs cooler
- Enhanced chamfers to improve durability
- Higher diamond density tables
- Stronger diamond to diamond bonding
- Innovative PDC manufacturing processes
- Proprietary diamond mixes to control crack propagation
- Enhanced substrate for erosion resistance
- Rotating cutter
- Shaped cutters
- Nano-technology
- Non-metallic binders, reattached, brazed, etc.
Lateral section, Bakken, 6” 6 blades

• Features
 – Short profile
 – Longer gage length
 – Variable back-rakes
 – DOC features as required
 – Large blade standoff
 – Open hydraulically

• Results
 – Drilled the entire lateral
 – Typically requires 2-3 bits to reach a similar depth
 – Saved the customer trip time and bit cost
 – 9,685' in 101.5 hours for an average ROP of 95.4 ft/hr.
 – Reduced the section versus the closest offset by 40 hours
 – Saved the operator $133,000.
Laboratory Test

- Dual Chamfer Geometry significantly adds cutter life
- Increase in Secondary Chamfer size increases cutter life
6.125” Standard Vs Dual Chamfer Cutters

Bit #1
DPD406X
1726’ @ 46.6 ft/hr

Alfalfa, Oklahoma

Bit #2
DPD406X DUAL CHAMFER
2438’ @ 55.7 ft/hr
8.75” Same Pad – Standard vs. Dual Chamfer

Bit #1
DPD505
3273’ @ 73.6 ft/hr

Bit #2
DPD505 Dual Chamfer
5105’ @ 74.5 ft/hr

Saginaw, Texas
Multidimensional Contoured Face

Longer, faster, and good dull in a very hard abrasive application
Multidimensional Contoured Face
Permian Case Study #1 – CO₂ Injection Wells

The Challenge
- Yoakum County, TX
- San Andres Formation
 - Hard dolomites, anhydrites, and salts
- Drill curve and entire lateral with one bit

The Solution
- State of the Art PDC Bit
 - Polished Cutters
 - Application Specific Cutter Technology
 - Steel body with new Hardfacing
 - Enhanced Directional Control
The Results

- Back to back record runs
- Exceptional tool face control
- Saved 2 days on well
- Great dull condition

Note: 2 runs, near identical
Case Study #2 – Wolfcamp B Horizontal

The Challenge

• Reagan County, TX
• Wolfcamp B Formation
 – Shale, sandstone, chert
• Drill 9,500ft lateral with one bit
• Conventional motor assembly

The Solution

• State of the Art PDC Bit
 – Polished Cutters
 – Enhanced Cutter Technology
 – Steel body with new Hardfacing
 – Enhanced Directional Control
The Results

- Drill 9,500ft at 98ft/hr
 - Offsets typically drill interval with multiple bits
- Saved operator 4 days drilling time
- Excellent steerability
Eagleford Vertical-Curve-Lateral 1 bit run

Challenge
- Complete V-C-L in ONE bit run
- Drill each section with increased ROP
- Maintain exceptional toolface control in the curve section

Results
- Went in at 5,200' and drilled to TD at 16,905' in 107 hours;
- ROP of 109 ft/hr.
- Saved the customer 78.7 hours compared to the offset average and approximately $139,000!

Impact
- 1 bit under surface to TD is not an item on your Christmas list any more but a real possibility! Work with your bit engineer to choose the right features and operating parameters.
Eagleford Vertical-Curve-Lateral, 1 bit run

• Challenges
 – Drill the entire Vertical-Curve-Lateral with a conventional assembly from surface casing in one run with one bit and BHA
 – Drill vertical section at increased ROP
 – Maintain tool face control in the curve to achieve build rates
 – Improved tracking ability in the lateral to reduce slide time

• Results
 – Completed the Vertical-Curve-Lateral section 20 times, YTD 2014
 – There has NOT been one DBR'd bit out of the 20 completed runs
 – Dull grades typical 11TD to 12TD
Eagleford Vertical-Curve-Lateral, 1 bit run

<table>
<thead>
<tr>
<th>RUN DATE</th>
<th>COUNTY</th>
<th>BIT SIZE</th>
<th>BIT TYPE</th>
<th>DEPTH IN</th>
<th>DEPTH OUT</th>
<th>DISTANCE</th>
<th>ROP (ft/hr)</th>
<th>DULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/28/14</td>
<td>ATASCOSA</td>
<td>8.5</td>
<td></td>
<td>4124</td>
<td>13693</td>
<td>9559</td>
<td>143.9</td>
<td>1-1-CT-S-X-I-WT-TD</td>
</tr>
<tr>
<td>7/26/14</td>
<td>GONZALES</td>
<td>8.5</td>
<td></td>
<td>7204</td>
<td>16815</td>
<td>9611</td>
<td>116.5</td>
<td>1-1-WT-S-X-I-NO-TD</td>
</tr>
<tr>
<td>4/27/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5200</td>
<td>16905</td>
<td>11705</td>
<td>109.4</td>
<td>1-2-CT-A-X-I-NO-TD</td>
</tr>
<tr>
<td>1/6/14</td>
<td>LA SALLE</td>
<td>8.5</td>
<td></td>
<td>6160</td>
<td>16773</td>
<td>10613</td>
<td>108.6</td>
<td>1-1-CT-N-X-I-WT-TD</td>
</tr>
<tr>
<td>6/19/14</td>
<td>ZAVALA</td>
<td>8.75</td>
<td></td>
<td>3160</td>
<td>14583</td>
<td>11423</td>
<td>108.3</td>
<td>1-1-WT-S-X-I-NO-TD</td>
</tr>
<tr>
<td>5/6/14</td>
<td>MCMULLEN</td>
<td>8.5</td>
<td></td>
<td>4674</td>
<td>17624</td>
<td>12950</td>
<td>107.4</td>
<td>1-1-CT-S-X-I-WT-TD</td>
</tr>
<tr>
<td>6/12/14</td>
<td>MCMULLEN</td>
<td>8.5</td>
<td></td>
<td>4842</td>
<td>17511</td>
<td>12669</td>
<td>106.5</td>
<td>1-1-WT-A-X-I-NO-TD</td>
</tr>
<tr>
<td>3/2/14</td>
<td>MCMULLEN</td>
<td>8.5</td>
<td></td>
<td>6275</td>
<td>17481</td>
<td>11206</td>
<td>104.2</td>
<td>1-1-CT-S-X-I-NO-TD</td>
</tr>
<tr>
<td>6/14/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5780</td>
<td>18250</td>
<td>12470</td>
<td>96.7</td>
<td>2-2-WT-A-X-I-CT-TD</td>
</tr>
<tr>
<td>6/21/14</td>
<td>ZAVALA</td>
<td>8.75</td>
<td></td>
<td>3160</td>
<td>14583</td>
<td>11423</td>
<td>92.5</td>
<td>1-1-WT-A-X-I-NO-TD</td>
</tr>
<tr>
<td>6/26/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5785</td>
<td>17970</td>
<td>12185</td>
<td>85.8</td>
<td>2-2-CR-C-X-I-CT-TD</td>
</tr>
<tr>
<td>5/27/14</td>
<td>DE WITT</td>
<td>8.75</td>
<td></td>
<td>3845</td>
<td>18796</td>
<td>14951</td>
<td>85.4</td>
<td>1-1-BT-G-X-I-CT-TD</td>
</tr>
<tr>
<td>4/21/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5200</td>
<td>16835</td>
<td>11635</td>
<td>83.1</td>
<td>1-2-LT-S-X-I-CT-TD</td>
</tr>
<tr>
<td>4/10/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>4438</td>
<td>16195</td>
<td>11757</td>
<td>81.6</td>
<td>1-2-BT-S-X-I-CT-TD</td>
</tr>
<tr>
<td>2/17/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5700</td>
<td>16712</td>
<td>11012</td>
<td>77.3</td>
<td>1-2-BT-S-X-I-CT-TD</td>
</tr>
<tr>
<td>4/8/14</td>
<td>MCMULLEN</td>
<td>8.5</td>
<td></td>
<td>6123</td>
<td>17571</td>
<td>11448</td>
<td>76.6</td>
<td>2-2-LT-N-X-I-WT-TD</td>
</tr>
<tr>
<td>6/21/14</td>
<td>ZAVALA</td>
<td>8.75</td>
<td></td>
<td>2750</td>
<td>14001</td>
<td>11251</td>
<td>74.5</td>
<td>2-1-CR-N-X-I-WT-TD</td>
</tr>
<tr>
<td>3/18/14</td>
<td>LA SALLE</td>
<td>8.5</td>
<td></td>
<td>4425</td>
<td>17080</td>
<td>12655</td>
<td>72.2</td>
<td>1-1-CT-A-X-I-CT-TD</td>
</tr>
<tr>
<td>5/25/14</td>
<td>ATASCOSA</td>
<td>8.75</td>
<td></td>
<td>3428</td>
<td>13825</td>
<td>10397</td>
<td>63.6</td>
<td>1-2-CT-G-X-I-NO-TD</td>
</tr>
<tr>
<td>1/27/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5587</td>
<td>19078</td>
<td>13491</td>
<td>60</td>
<td>1-2-BT-G-X-I-WT-TD</td>
</tr>
<tr>
<td>3/18/14</td>
<td>MCMULLEN</td>
<td>8.75</td>
<td></td>
<td>5190</td>
<td>15658</td>
<td>10468</td>
<td>55.7</td>
<td>1-2-C-S-X-I-WT-TD</td>
</tr>
</tbody>
</table>
Hybrid Bits Case Study in Unconventionals

• The Challenge: Wolfecamp curve
 – Complete curve in one run
 – Maintain or improve wear, durability, dull condition over PDC.
 – Drill through conglomerate, chert, sand

• The results
 – Beat offsets solidly
 – Run of 38.8 fph vs. 18.0 fph
 – Maintained targeted build rate of 14° or higher per hundred
 – One run curve in typical “2” bit section
 – 1,1 Dull
 – Saved 18 hours vs. offset average
Hybrid Performance in Curve

Case Study: 8¾-in. Kymera (Reeves County)
Depth In/Depth Out vs. ROP

Offsets (Average)

Kymera FSR
Hybrid FSR vs. 7 blade
- Bone Springs, Permian

Problem drilling curve:
- Bone Springs Permian
- Challenging Carbonates
- Multiple bits building 12°/100ft
- Limited WOB with PDC due to reactive torque

Solution:
- 8-3/4” Hybrid in 1 bit
- Smooth drilling
- Increased ROP due to reduced reactive torque

Increased ROP by up to 2x in carbonates

Case Study: Hybrid Technology in South Texas

Hybrid vs. 5 - 6 blades
- Eagle Ford, South Texas

“125 ft/hr from Hybrid is the fastest I've seen through a curve on this pad”
Directional Driller for Eagle Ford

Problem drilling curve:
- Karnes county, Eagle Ford
- Multiple bits curves & DTF
- Limited WOB with PDC due to reactive torque

Solution:
- Hybrid up to 125ft/hr
- Maintain steerability and allowed to maximize speed
- Set operator record for Eagle Ford

Consistency and speed, saves $510k in 3 wells
Case Study: Hybrid curve in Mid-continent

Challenge:
- Complete curve in 1 run
- Improve ROP, footage, customer economics
- Maintain tool face control
- Reduce number of bits and trips

Results
- Hybrid 674’ at 13.2 fph
- PDC 356’ at 7.9 fph
- Faster, longer runs
- Less bits
- Improved economics
- Happy customer
Summary

• Innovations in the PDC cutter and PDC bit have greatly improved economics of horizontal unconventional wells.
• One PDC bit can generally complete the lateral.
• The focus shifted to the vertical and build sections.
• One section bit runs are becoming the norm.
• Hybrid bit technology is becoming a standard curve choice in more demanding applications.
• One bit to TD is a realistic objective in many applications. One bit V-C-L is in sight for more applications.
 – Bit specialist and drilling engineer collaboration.
• Today’s PDC cutter is substantially improved over decade.
• Cutter and bit innovations have lead to field records.
• Innovation is alive and well in our industry.
Future Possibilities (Survey of US Patents)

• Real time data from the bit
 – Module in the bit shank with monitoring and measuring capabilities
 – Optimize parameters
 – Maximum performance

• Sensors and monitors in the bit
 – Performance
 – Response
 – Formations
 – Integral part of the automated drilling system

• Bit as part of an adaptive system

• Innovative cutter shapes

• Innovative diamond tables

• Smart PDC cutters
Thank the DEA for this opportunity to share results of recent innovations.

Thank you for your attention.