The Dual Gradient Drilling System

David Dowell
Chevron North America Exploration and Production Company

IADC Dual Gradient Drilling Workshop
May 5, 2011
Riser at Seawater Gives Full DGD Effect

Seafloor

Depth

Pressure

Seawater Hydrostatic

Fracture Pressure

Pore Pressure

Dual Gradient Density at TD

TD

© 2011 Chevron U.S.A. Inc. All Rights Reserved.
This material is proprietary information of Chevron U.S.A. Inc. and is Confidential – Restricted Access to specific, authorized individuals only. Unauthorized modification, duplication or distribution of this material is expressly forbidden.
Chevron Prefers Positive Displacement Pumps

- **Seawater Hydraulically Powered**
 - Power generated on surface - minimal electrical power below surface

- **Riser Margin**
 - System has riser margin (most of the time), so well is dead

- **Positive Displacement Pumps**
 - Improved overall well control capabilities
 - Due to design of pumps, the pump can’t suck on well – well must flow for pump to function
 - With PD pumps, gal in = gal out: therefore -- extremely fine kick detection
 - Pump prevents fluid “backflow” into well so well is isolated from return line
 - Pump measures flow out to the nearest pint
 - Basic design results in multiple levels of redundancy

- **Highly Versatile / Rapid Pressure Control**
 - Add mud weight
 - Add backpressure
 - Change the fluid level in the riser
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
Normal Drilling – The U-tube Is Balanced

- **Sea Level**
- **Mud Line**
- **Drillstring**
- **Annulus**
- **Bottom Hole**
- **Bit**
DGD Drilling – The U-tube Is Unbalanced

- Sea Level
- Drillstring
- Annulus
- Mud Line
- Bit
- Bottom Hole
The Drill String Valve Arrests the Natural U-Tube

- Variable Opening Valve in BHA
- 3 Sizes
- Evaluating two Major Companies’ Designs
- Is be Tested in Top-hole Operations

(JIP Design, 1998)
About the Drill String or Flow Stop Valve

- Not “essential”
- Makes operations appear more normal
- Arrests the U-tube
 - Faster connections
 - Makes Kick Detection Simpler
 - Easier to manage the MLP
 - Helpful in flow rate management
 - Helpful in well control pressure reading
- Run above the BHA, you can’t wireline below it
- Mechanism of operation, not intuitive
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
Surface Changes

- Six rig pumps
 - Three for power fluid and Three for mud
 - One back-up for each fluid stream
- Additional trip tank (riser fluid)
- More piping for handing up to 3 fluids at once
- Pits divided for multiple fluids
The Drilling Riser is Modified

- MudLift Pump is Seawater-Powered, so Riser Modifications are Needed
- Two Six inch Lines
 - Seawater Power
 - Mud Return
- No Boost Line
- 3.5MM lb Flange rating
- Standard 15K C&K lines
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
Subsea Rotating Device Separates Mud from Riser Fluid

- Located above the Solids Processing Unit in the DGD System
- The “Active” guts: seals and bearings are retrievable
- Seals pressure from both below and above, typically 50 psi, up to 1000 psi WP
- Maintains the gradient “interface”
- Allows for rapid Managed Pressure Drilling type operations
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
The Solids Processing Unit (SPU)

Part of a riser specialty joint
Provides feed of mud to MLP
Sizes solids to 1-1/2” or smaller
Controlled and powered by the MLP control system
Choke and Kill lines pass through it
Tears Everything to Pumpable Sizes

- Sits in Riser below SRD
- Two separate feed paths
- Can be flushed in multiple ways
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
The Heart: MudLift Pump

- (2) Triplex modules
- 80 gallon chambers
- 1800 gpm max rate
- 10,000’ WD rating
- 18.5 ppg mud
- Contains Subsea Manifold
DGD Subsea Component Stack-Up
(Not to Scale)

- Subsea Rotating Device (SRD)
- Solids Processing Unit (SPU)
- MudLift Pump (MLP)
- Subsea Manifold
- Standard BOP Stack
Subsea Stack

- The BOP Stack is unchanged
- One extra valve placed in the Choke line for improved operations
- Still have complete “conventional” Well Control available.
Questions?